您当前位置: 首页  >  团队队伍  >  博士生导师  >  正文

博士生导师

杨博



姓名:

杨博

职称: 教授、博士生导师

邮箱:

361B

联系电话:


办公地址:

王湘浩楼B507

教研室:

知识科学与知识工程

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

基本信息                                                                                                    
   

        杨博,男,教授,博士生导师。现任十大网投信誉排名(中国)有限公司经理,软件学院经理,符号计算与知识工程教育部重点实验室主任。2003年于十大网投信誉排名(中国)有限公司获博士学位,曾赴香港浸会大学、英国华威大学、悉尼科技大学、乔治梅森大学等访问交流。主要研究领域:人工智能,知识工程。目前的研究方向:图机器学习与图挖掘,复杂系统学习,神经符号系统,智能推荐系统,图神经网络,图优化,人机融合系统等国家级科技领军人才


招生信息

        杨博教授所在网络大数据研究科研团队现有教授、副教授6人,在站博士后3名,博士生12名,硕士生24名。研究组常年招收博士研究生和硕士研究生,在读研究生在学校奖学金基础上可获额外科研津贴2023年的博士生名额和硕士生名额均有空缺欢迎具有较强自驱力和浓厚科研兴趣的同学投递简历!(简历投递邮箱:

招生专业:

  • 博士研究生

            十大网投信誉排名:计算机软件与理论

  • 硕士研究生

            十大网投信誉排名:计算机软件与理论、计算机技术

            软件学院:软件工程(学术型)、软件工程(专业型)

【毕业员工去向】

        本组员工毕业后就职于阿里巴巴、京东、百度、华为、用友、中国人民银行、中国银联总部、中国农行总部、国家电网、中国移动、一汽研发总院、上海期货等大型互联公司和国家重点企事业单位,香港大学、西安交通大学、公司、东北师范大学、深圳信息职业技术学院等知名高等院校,或在香港理工大学、香港浸会大学、公司、天津大学、哈尔滨工业大学等知名高校继续攻读博士学位。


最新消息

祝贺李岸宸同学的论文被CCF A类期刊IEEE TKDE录用

祝贺本组发表于在IEEE TPAMI的论文入选ESI高被引论文和热点论文

祝贺史丹同学撰写的硕士毕业论文被评为公司优秀硕士学位论文

祝贺李岸宸同学在CCF A类国际会议WWW2022发表论文

祝贺于东然同学在CCF A类国际会议CVPR2022发表论文

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

科研成果

        近年来,研究组在贝叶斯优化、网络表示学习、图神经网络、社会化推荐系统、数据驱动的智能传染病防控、时空网络建模与挖掘等方面取得了多项创新性研究成果,主持或完成科技创新2030新一代人工智能重大项目,国家自然科学基金重点、面上、青年项目,军科委国防项目,华为校企联合等项目20多项,发表论文近200篇,其中在IEEE TPAMI、IEEE TKDE、IEEE TCYB、IEEE TNNLS、ACM TWEB、ACM TKDD、ML、JAAMAS、DKE、WWWJ、Information Sciences、AAAI、IJCAI、NeurIPS、ICLR、ACL、WWW、CIKM、ICDM、COLING、UbiComp等CCF A/B类期刊和会议上发表论文50余篇,国内一级学报论文20余篇,出版专著1部,译著1部,获国家发明专利10多项。项目组完成的项目组完成的“领域驱动的网络大数据分析理论与方法”获吉林省自然科学一等奖(2021),“大规模网络机器学习和数据挖掘方法”获吴文俊人工智能科学技术奖自然科学二等奖(2017),“复杂知识处理的基本方法研究”获吉林省自然科学二等奖(2014),“大数据和移动互联时代快速知识共享关键技术创新及应用”获中国商业联合会科学技术一等奖(2020)。

【相关论文】

图机器学习与图挖掘:

[1] Bo Yang, Xueyan Liu, Yang Li, Xuehua Zhao. Stochastic blockmodeling and variational Bayes learning for signed network analysis,IEEE Transactions on Knowledge and Data Engineering (TKDE) , 2017, 29(9): 2026-2039.(CCF A)

[2] Bo Yang, Xuehua Zhao. On the scalable learning of stochastic blockmodel. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15), Jan 25-30, 2015:360-366. (CCF A)

[3] Bo Yang, Xuehua Zhao, Xueyan Liu. Bayesian approach to modeling and detecting communities in signed network. The 29th AAAI Conference on Artificial Intelligence (AAAI’15), Jan 25-30, 2015: 1952-1958. (CCF A)

[4] Bo Yang, Jiming Liu, Jianfeng Feng. On the spectral characterization and scalable mining of network communities.IEEE Transactions on Knowledge and Data Engineering(TKDE),2012,24(2):326-337.(CCF A)

[5] Xueyan Liu, Bo Yang*, Hechang Chen, Katarzyna Musial, Hongxu Chen, Yang Li, Wangli Zuo. A Scalable Redefined Stochastic Blockmodel,ACM Transaction on Knowledge Discovery and Data Mining (TKDD), 2021, 15(3): 1-28. (CCF B)

[6] Xueyan Liu, Bo Yang*, Wenzhuo Song,Katarzyna Musial, Wanli Zuo, Hongxu Chen, Hongzhi Yin. A block-based generative model for attributed network embedding.World Wide Web (WWWJ), 2021, 24(5): 1439-1464. (CCF B)

[7] Bo Yang, Jiming Liu, Da-you Liu. Characterizing and extracting multiplex patterns in complex networks.IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics (TCYB), 2012, 42(2):469-481. (CCF B)

[8] Bo Yang, Di Jin, Jiming Liu, Dayou Liu. Hierarchical community detection with applications to real-world network analysis.Data & Knowledge Engineering (DKE), 2013, 83: 20-38. (CCF B)

[9] Xueyan Liu, Wenzuo Song, Katarzyna Musial, Xuehua Zhao, Wanli Zuo, Bo Yang*, Semi-supervised stochastic blockmodel for structure analysis of signed networks,Knowledge-Based Systems(KBS), 2020, 195: 105714. (中科院1区)

[10] Bo Yang, Hechang Chen, Xuehua Zhaoa, Masato Naka, Jing Huang. On characterizing and computing the diversity of hyperlinks for anti-spamming page ranking.Knowledge-Based Systems(KBS), 2015, 77: 56-67. (中科院1区)

[11] Bo Yang, William K. Cheung, Jiming Liu. Community mining from signed social networks.IEEE Transactions on Knowledge and Data Engineering(TKDE), 2007, 19(10): 1333-1348. (CCF A)

[12] Yang Li, Wenzhuo Song, Bo Yang*. Stochastic variational inference-based parallel and online supervise topic mode.Journal of Computer Science and Technology (JCST), 2018, 33(5): 1007-1022. (CCF B)

[13] 赵学华,杨博*,陈贺昌.一种高效的随机块模型学习算法.软件学报, 2016, 27(9): 2248-2264.

[14] 杨博,陈贺昌,朱冠宇,赵学华.基于超链接多样性分析的新型网页排名算法.计算机学报, 2014, 34(4): 833-847.

[15] 刘大有,金弟,何东晓,杨建宁,黄晶,杨博*.复杂网络社区挖掘综述.计算机研究与发展, 2013, 50(10): 2140-2154

[16] 杨博,刘杰,刘大有,基于随机网络集成模型的广义网络社区挖掘算法.自动化学报,2012,38(5): 812-822.


复杂系统学习/流行病防控:

[17] Hongbin Pei, Bo Yang*, Jiming Liu, Kevin Chang. Active Surveillance via Group Sparse Bayesian Learning.IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),2022, 44(3): 1133-1148. (CCF A) ESI热点论文、高被引论文

[18] Hongbin Pei, Bo Yang*, Jiming Liu, Lei Dong. Group sparse Bayesian learning for actively surveillance on epidemic dynamics. In Proceedings of 32th AAAI Conference on Artificial Intelligence (AAAI’18), Feb 2-7, 2018.(CCF A)

[19] Bo Yang, Hongbin Pei, Hechang Chen, Jiming Liu, Shang Xia. Characterizing and discovering spatiotemporal social contact patterns for healthcare.IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017, 39(8), 1532-1546.(CCF A)

[20] Yuan Bai, Bo Yang*, Zhanwei Du, Lauren Ancel Meyers. Location based surveillance for early detection of contagious outbreaks. In Procedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp’15), Sept 7-11, 2015: 77-80.(CCF A)

[21] Bo Yang, Hua Guo, Yi Yang, Benyun Shi, Xiaonong Zhou, Jiming Liu. Modeling and mining spatiotemporal patterns of Infection risk from heterogeneous data for active surveillance planning. The 28th AAAI Conference on Artificial Intelligence (AAAI’14), Jul 27-31, 2014: 493-499. (CCF A)

[22] Dayou Liu,Bo Yang*, Shang Gao,Yungang Zhu, Yong Lai. Intelligent CPSS and its application to health care computing,Science China (information sciences), 2016, 59(5): 050103:1-3.(CCF B)

[23] Bo Yang, Hongbin Pei, Hechang Chen, Jiming Liu, Shang Xia. Modeling and mining spatiotemporal social contact of metapopulation from heterogeneous data. IEEE 14th International Conference on Data Mining (ICDM ’14), Dec 14-17, 2014: 630- 639. (CCF B)

[24] 杨博,刘际明,杨建宁,白媛,刘大有.基于自治计算的流行病传播网络建模与推断.软件学报, 2012, 23(11): 2955-2970.


图神经网络、图优化和神经符号系统:

[25] Hongbin Pei, Bingzhe Wei, Kevin Chang, Chunxu Zhang, Bo Yang*. Curvature Regularization to Prevent Distortion in Graph Embedding. The 34th International Conference on Neural Information Processing Systems (NeurPIS’20), Dec 6-12, 2020, 1-12. (CCF A)

[26] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, Bo Yang*. Geom-GCN: geometric graph convolutional networks. In Proceedings of the 8th International Conference on Learning Representations (ICLR’20), Apr 26-30, 2020, 1-12. (清华A类论文)

[27] Dongran Yu,Bo Yang*, Qianhao Wei, Anchen Li, Shirui Pan. A Probabilistic Graphical Model Based on Neural-Symbolic Reasoning for Visual Relationship Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022: 10609-10618. (CCF A)

[28] Jiaxu Cui, Bo Yang*, Bingyi Sun, Jiming Liu. Cost-aware Graph Generation: A Deep Bayesian Optimization Approach. The 35th AAAI Conference on Artificial Intelligence (AAAI’21), Feb 2-9, 2021,7142-7150. (CCF A)

[29] Jiaxu Cui, Bo Yang*, Xia Hu. Deep Bayesian optimization on attributed graphs. In Proceedings of 33rd AAAI Conference on Artificial Intelligence (AAAI’19), Jan 27-Feb 1, 2019, 1377-1384.(CCF A)

[30] Jiaxu Cui, Bo Yang*, Bingyi Sun, Xia Hu, Jiming Liu. Scalable and Parallel Deep Bayesian Optimization on Attributed Graphs,IEEE Transactions on Neural Networks and Learning Systems(TNNLS), 2022, 33(1): 103-116. (CCF B)

[31] Jiaxu Cui, Qi Tan, Chunxu Zhang, Bo Yang*. A Novel Framework of Graph Bayesian Optimization and Its Applications to Real-World Network Analysis.Expert System with Applications, 2021, 170: 114524. (中科院1区)

[32] 崔佳旭,杨博*.贝叶斯优化方法和应用综述.软件学报, 2018, 29(10):3068-3090

[33] 杨博,张钰雪晴,彭羿达,张春旭,黄晶.一种协同过滤式零次学习方法,软件学报,2021,32(9):2801-2815


智能推荐系统:

[34] Anchen Li, Bo Yang, Huan Huo, Hongxu Chen, Guandong Xu, and Zhen Wang. Hyperbolic Neural Collaborative Recommender. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022. (Accepted) (CCF A)

[35] Anchen Li, Bo Yang*, Huan Huo, Farookh Hussain. Hypercomplex Graph Collaborative Filtering. In Proceedings of the ACM Web Conference (WWW’22), Apr 25-29, 2022. (CCF A)

[36] Bo Yang, Yu Lei, Jiming Liu, Wenjie Li. Social collaborative filtering by trust.IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017, 39(8), 1633-1647. (CCF A) ESI高被引论文

[37] Bo Yang, Yu Lei, Dayou Liu, Jiming Liu. Social collaborative filtering by trust. The 23rd International Joint Conference on Artificial Intelligence (IJCAI’13), Aug 3-9, 2013: 2747-2753. (CCF A)

[38] Anchen Li,Bo Yang*, Farookh Khadeer Hussain, Huan Huo. HSR: Hyperbolic Social Recommender,Information Sciences, 2022, 585: 275-288. (CCF B)

[39] Anchen Li, Bo Yang*, Huan Huo, Farookh Khadeer Hussain. Leveraging Implicit Relations for Recommender Systems, Information Sciences, 2021, 579: 55-71. (CCF B)

[40] Anchen Li, Bo Yang*. GSIRec: Learning with graph side information for recommendation, World Wide Web (WWWJ), 2021, 24(5): 1411-1437. (CCF-B)

[41] Yuyao Liu, Bo Yang, Hongbin Pei, Huang Jing*. Neural Explainable Recommender Model Based on Attributes and Reviews. Journal of Computer Science and Technology (JCST), 2020, 35(6): 1446-1460. (CCF B)


【在研的科研项目】

[1] 复杂动态系统智能理论与方法研究,科技创新2030—“新一代人工智能”重大项目

[2] 领域驱动的新型属性图优化理论、方法及应用研究,国家自然科学基金区域创新发展联合基金重点支持项目

[3] 融合深度学习和贝叶斯优化的网络优化理论与方法,国家自然科学基金面上项目

[4] 面向大规模网络分析的贝叶斯随机块模型与算法研究,国家自然科学基金面上项目

----------------------------------------------------------------------------------------------------------------------------------------------------------------------

员工培养                                                                                                    
   

博士毕业生:

2017级刘学艳,毕业去向:公司,鼎新博士后

2016级崔佳旭,获公司优秀博士学位论文,毕业去向:公司,鼎新博士后

2015级裴宏斌,获公司优秀博士学位论文,毕业去向:国家博新计划,西安交通大学,助理教授

2014级陈贺昌,获国家奖学金,毕业去向:公司人工智能学院副教授

2013级李洋,毕业去向:空军航空大学,教授

2012级白媛,毕业去向:香港大学,博士后

2011级赵学华,获公司优秀博士学位论文,毕业去向:深圳信息职业技术学院,副教授

硕士毕业生:

2019级:刘丁菠(中国第一汽车集团),任志航(一汽红旗总部),李俊达(美的),王兴浩(百度),赵海宏(香港浸会大学读博),史丹(天津大学读博),邹晓娜(58同城),苗航(小鹏汽车),滕云(中国地质大学读博),彭羿达(公司),吕浩(京东),李文豪(国家电网)

2018级:张钰雪晴(滴滴),张宇杰(百度),臧璇(哈尔滨工业大学(深圳)读博),孙丽丽(公司读博),陈曦(58同城),王蓓蓓(华为),黄思理(公司读博),赵栎煊(长春市肿瘤医院),张棋(阿里巴巴)

2017级:刘阳(京东科技),李思锐(华为),徐志娟(用友网络科技),魏星(一汽研发总院),刘禹尧(小米),黄蛟(公司读博)

2016级:于智郅(天津大学读博),沙伟(中国银联),李欣宇(字节跳动),单双双(荣耀),许思思(公司大数据和网络管理中心),段明月(河北汉光重工有限责任公司),刘子玉(贝壳找房),杨爽(农业银行上海总部)

2015级:崔贤娟(华为),江原(南洋理工大学读博),陈茶上(华为)

2014级:刘学艳(公司读博),宋文卓(公司读博,现任职于东北师范大学),贺珊珊(中核控制系统工程有限公司),林丽娟(北京华为研究所),张佳博(TCL科技有限公司)

2013级:郭成蹊(华夏银行),谷霄(上海期货信息技术有限公司),谢欣欣(北京广利核系统工程有限公司),王馨蕾(百度,现任职于蚂蚁金服),白天晟(一汽研发总院)

2012级:杨燚(中国银联总部),裴红斌(公司读博,现任职于西安交通大学)

2011级:徐晓东(中国人民银行),陈贺昌,(公司读博,现任职于公司),郭华(中国移动),雷余(香港理工大学读博,现任职于腾讯公司)

2010级:金鑫(农业银行),杨建宁(国家电网)