您当前位置: 首页  >  团队队伍  >  教研室  >  数据库与智能网络

数据库与智能网络

张小利


基本情况
姓名: 张小利
性别:
职称: 副教授
是否博导:
最高学历:
研究生
最高学位: 博士
邮箱: zhangxiaoli@jlu.edu.cn


详细情况
工作经历:

(1) 2019.09-至今 十大网投信誉排名(中国)有限公司 副教授

(2) 2018.11-2019.09 十大网投信誉排名(中国)有限公司 讲师

(3) 2016.09-2018.11 公司通信工程学院博士后

研究方向:

图像与视频处理、机器学习

主持项目:
  1. 国家自然科学基金(青年基金),61801190,基于自适应分解的图像融合及其质量评估问题研究。

  2. 吉林省优秀青年人才基金项目,20180520029JH,基于深度学习的图像融合算法研究。

  3. 中国博士后科学基金面上项目(二等),2017M611323,图像融合质量评价体系构建理论研究。

  4. 符号计算与知识工程教育部重点实验室自主课题项目,93K172017Z02,多尺度图像融合算法理论研究。

  5. 横向项目,基于深度学习的牛脸识别系统。

  6. 横向项目,基于深度学习的视觉SLAM定位关键技术研发项目。

学术论文:
  1. Wang Zeyu, Li Xiongfei, Duan Haoran, Zhang Xiaoli*. A Self-supervised Residual Feature Learning Model for Multi-focus Image Fusion. IEEE Transactions on Image Processing, 2022, 31: 4527-4542. (CCF A)

  2. Zhu Rui, Li Xiongfei, Huang Sa, Zhang Xiaoli*. Multimodal medical image fusion using adaptive co-occurrence filter-based decomposition optimization model. Bioinformatics, 2022, 38(3):818-826. (CCF B)

  3. Zhu Rui, Li Xiongfei, Zhang Xiaoli*, Wang Jing. HID: The Hybrid Image Decomposition Model for MRI and CT Fusion. IEEE journal of biomedical and health informatics, 2022, 26(2):727-739. (中科院1区,TOP期刊)

  4. Luo Shi, Li Xiongfei, Zhang Xiaoli*. Wide Aspect Ratio Matching for Robust Face Detection. Multimedia Tools and Applications, 2022.

  5. Luo Shi, Li Xiongfei, Zhang Xiaoli*. Bounding-box deep calibration for high performance face detection. IET Computer Vision, 2022.

  6. Yu Shuang, Li Xiongfei, Feng Yuncong, Zhang Xiaoli*, Shiping Chen. An Instance-Oriented Performance Measure for Classification. Information Sciences, 2021, 580: 598-619. (中科院1区,CCF B)

  7. Wang Yu, Li Xiongfei, Zhu Rui, Wang Zeyu, Feng Yuncong, Zhang Xiaoli*. A multi-focus image fusion framework based on multi-scale sparse representation in gradient domain. Signal Processing, 2021, 189: 108254. (中科院2区)

  8. Yu Shuang, Li Xiongfei, Wang Hancheng, Zhang Xiaoli*, Chen Shiping. C_CART: An instance confidence-based decision tree algorithm for classification. Intelligent Data Analysis, 2021, 25 (4): 929-948. (CCF C类期刊)

  9. Zhang Siqi, Li Xiongfei, Zhang Xiaoli*, Zhang Shuhan.Infrared and visible image fusion based on saliency detection and two-scale transform decomposition. Infrared Physics & Technology, 2021, 114.

  10. Wang Zeyu, Li Xiongfei, Duan Haoran, Su Yanchi, Zhang Xiaoli*,Guan Xinjiang.Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform[J]. Expert Systems with Applications,2021, 171.

  11. Yu Shuang, Li Xiongfei, Ma Mingrui, Zhang Xiaoli*, Chen Shiping.Multi-focus image fusion based on L1 image transform[J]. Multimedia Tools and Applications,2021, 80 (4): 5673-5700.

  12. Yu Shuang, Li Xiongfei, Wang Hancheng, Zhang Xiaoli*, Chen Shiping.BIDI: A classification algorithm with instance difficulty invariance[J]. Expert Systems with Applications,2021, 165.

  13. Zhang Siqi, Li Xiongfei, Zhu Rui, Zhang Xiaoli*, Wang Zeyu, Zhang Shuhan.Medical image fusion algorithm based on L-0 gradient minimization for CT and MRI[J]. Multimedia Tools and Applications,2021.

  14. Zhu Rui, Li Xiongfei, Zhang Xiaoli*,Ma Mingrui.MRI and CT Medical Image Fusion Based on Synchronized-Anisotropic Diffusion Model[J]. IEEE Access,2020, 8: 91336-91350.

  15. Zhu Rui, Li Xiongfei, Zhang Xiaoli*,Xu Xiaowei.MRI enhancement based on visual-attention by adaptive contrast adjustment and image fusion[J]. Multimedia Tools and Applications,2020.

  16. Jiang Shuai, Li Xiongfei, Zhang Xiaoli*: An Image Fusion Algorithm Based on Local Laplasse Filter, Xu M,Zhang K,editor,Proceedings of the 2nd International Conference on Advances inMechanical Engineering and Industrial Informatics,2016: 571-577.

  17. Li Xiongfei, Wang Lingling, Wang Jing, Zhang Xiaoli*. Multi-focus image fusion algorithm based on multilevelmorphological component analysis and support vector machine[J].IET ImageProcessing,2017, 11 (10): 919-926.

  18. Liu Sihan, Li Xiongfei, Zhang Xiaoli*. Remote sensing image fusion algorithm based on mutual-structure forjoint filtering using saliency detection[J].Journal of Electronic Imaging,2019,28 (3).

  19. Luo Shi, Li Xiongfei, Zhu Rui, Zhang Xiaoli*. SFA: Small Faces Attention Face Detector[J].Ieee Access,2019, 7:171609-171620.

  20. Wang Jing, Li Xiongfei, Wang Zeyu, Duan Haoran, Zhang Xiaoli*. Exposure correction using deep learning[J].Journal ofElectronic Imaging,2019, 28 (3).

  21. Wang Jing, Li Xiongfei, Zhang Yan, ZhangXiaoli*. Adaptive decomposition method for multi-modal medical imagefusion[J].IET Image Processing,2018, 12 (8): 1403-1412.

  22. Wang Zeyu, Li Xiongfei, Duan Haoran, Zhang Xiaoli*, Wang Hancheng. Multifocus image fusion usingconvolutional neural networks in the discrete wavelet transformdomain[J]. Multimedia Tools and Applications,2019, 78 (24): 34483-34512.

  23. Yang Chengjia, Li Xiongfei, Zhang Xiaoli. Lip Contour Extraction of RGB-based Improved Region GrowingAlgorithm[M]. 2014: 597-600.

  24. Ye Fajie, Li Xiongfei, ZhangXiaoli*. FusionCNN: a remote sensing image fusion algorithm based on deepconvolutional neural networks[J]. Multimedia Tools and Applications,2019, 78(11): 14683-14703.

  25. Yu Shuang, Li Xiongfei, Zhang Xiaoli*, Wang Hancheng. The OCS-SVM: An Objective-Cost-Sensitive SVM WithSample-Based Misclassification Cost Invariance[J]. IEEE Access,2019, 7:118931-118942.

  26. Zhang Xiaoli, Li Xiongfei,Feng Yuncong.A new image fusion performance measure using Riesztransforms[J]. Optik,2014, 125 (3): 1427-1433.

  27. Zhang Xiaoli, Li Xiongfei, Feng Yuncong. A medical image segmentation algorithm based on bi-directionalregion growing[J]. Optik,2015, 126 (20): 2398-2404.

  28. Zhang Xiaoli, Li Xiongfei, Feng Yuncong.A classification performance measure considering the degree ofclassification difficulty[J]. Neurocomputing, 2016, 193: 81-91.

  29. Zhang Xiaoli, Li Xiongfei, Feng Yuncong.A new multifocus image fusion based on spectrum comparison[J]. Signal Processing,2016, 123: 127-142.

  30. Zhang Xiaoli, Li Xiongfei, Feng Yuncong.Image fusion based on simultaneous empirical wavelet transform[J]. Multimedia Tools and Applications,2017, 76 (6): 8175-8193.

  31. Zhang Xiaoli, Li Xiongfei, Feng Yuncong, Liu Zhaojun.The use of ROC and AUC in the validation of objective image fusion evaluation metrics[J]. Signal Processing,2015, 115: 38-48.

  32. Zhang Xiaoli, Li Xiongfei, Feng Yuncong, Zhao Haoyu, Liu Zhaojun. Image fusion with Internal Generative Mechanism[J]. Expert Systems with Applications, 2015, 42 (5): 2382-2391.

  33. Zhang Xiaoli, Li Xiongfei,Li Hongpeng, Feng Yuncong, Ieee: A SEMI-AUTOMATIC BRAIN TUMOR SEGMENTATIONALGORITHM,2016 Ieee International Conference on Multimedia & Expo,2016.

  34. Zhang Xiaoli, Li Xiongfei,Liu Zhaojun, Feng Yuncong.Multi-focus image fusion using image-partition-based focus detection[J].Signal Processing,2014, 102: 64-76.

  35. Zhu Rui, Li Xiongfei, Zhang Xiaoli, Ma Mingrui.MRI and CT Medical Image Fusion Based on Synchronized-Anisotropic Diffusion Model[J]. IEEE Access,2020, 8: 91336-91350.

  36. Feng Yuncong, Shen Xuanjing, Chen Haipeng, Zhang Xiaoli: Internal Generative Mechanism Based Otsu MultilevelThresholding Segmentation for Medical Brain Images, Advances in Multimedia Information Processing - PCM 2015, PtI,2015: 3-12.

  37. Feng Yuncong, Shen Xuanjing, Chen Haipeng, Zhang Xiaoli. A weighted-ROC graph based metric for imagesegmentation evaluation[J]. Signal Processing,2016, 119: 43-55.

  38. Feng Yuncong, Shen Xuanjing, Chen Haipeng, Zhang Xiaoli. Segmentation fusion based on neighboring information for MR brain images[J]. Multimedia Tools and Applications,2017, 76 (22):23139-23161.

  39. Guo Rui, Shen Xuanjing, ZhangXiaoli*. 3D ROC Histogram: A New ROC Analysis Tool Incorporating Information on Instances[J].Ieee Access,2019, 7: 183396-183404.

  40. Guo Rui, Shen Xuanjing, ZhangXiaoli*. Comprehensive measure for evaluating image fusion algorithm[J].Journal of Electronic Imaging,2020, 29 (1).

  41. Qin Jun, Shen Xuanjing, Chen Haipeng, Lv Yingda, Zhang Xiaoli. A fusion algorithm for medical structural and functional images based on adaptive image decomposition[J]. Multimedia Tools andApplications,2019, 78 (22): 32605-32629.

  42. 李雄飞, 王婧, 张小利, 范铁虎.基于SVM和窗口梯度的多焦距图像融合方法[J].公司学报(工学版),2020, 50 (01): 227-236.

  43. 李雄飞, 宋璐, 张小利*.基于协同经验小波变换的遥感图像融合[J].公司学报(工学版),2019, 49 (04): 1307-1319.

  44. 李雄飞, 周晋男, 张小利*.基于混合模型的广告转化率问题研究[J].东北大学学报(自然科学版),2019, 40 (07): 942-947.

  45. 李雄飞, 冯婷婷, 骆实, 张小利*.基于递归神经网络的自动作曲算法[J].公司学报(工学版),2018, 48 (03): 866-873.

  46. 肖明尧, 李雄飞, 张小利, 张刘.基于多尺度的区域生长的图像分割算法[J].公司学报(工学版),2017, 47 (05): 1591-1597.

  47. 张小利, 李雄飞, 李军.融合图像质量评价指标的相关性分析及性能评估[J].自动化学报,2014, 40 (02): 306-315. (引用量:177,CNKI下载量2541次)

  48. 赵海英, 张小利, 李雄飞, 彭宏.基于多尺度Meanshift图像去噪算法[J].公司学报(工学版),2014, 44 (05): 1417-1422.

专利:
  1. (1/7) 基于卷积神经网络的多尺度遥感图像融合方法,专利号:ZL 2018 1 0839303.0, 授权日期:2021-06-29

  2. (3/6) 一种基于样本难度的垃圾邮件分类方法,专利号:ZL 2020 1 0374804.3, 授权日期:2022-07-22

  3. (3/5) 基于卷积神经网络的离散小波变换域多聚焦图像融合方法,申请号:20190534050.0,申请日期:2019-06-20

社会兼职:
  1. CCF 高级会员;

  2. 吉林省数字医学学会会员;

  3. 中国图象图形学会会员,医学影像专业委员会委员,数字文化遗产专委会委员;

  4. 多个SCI期刊、国内权威期刊(如计算机学报等)审稿人。

招生信息

欢迎对计算机视觉、深度学习感兴趣的同学报考本人硕士、博士研究生。